Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Manage ; 73(5): 913-919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424176

RESUMO

Brazil is among the main contributors to global biodiversity, which, in turn, provides extensive ecosystem services. Agriculture is an activity that benefits greatly from these ecosystem services, but at the same time is degrading aquatic and terrestrial ecosystems and eroding Brazilian biodiversity. This conflict is growing, as emerging unsustainable legislative proposals that will benefit the agricultural sector are likely to accelerate the decline of biodiversity. One such initiative (Bill 1282/2019) would change Brazil's "Forest Code" (Law 12,651/2012) to facilitate construction of irrigation dams in Permanent Preservation Areas, a category that includes strips (with or without vegetation) along the edges of watercourses. Two other similar bills are advancing through committees in the Chamber of Deputies. Here we provide details of these three bills and discuss their consequences for Brazil's biodiversity if they are approved. Expected negative impacts with changes in the legislation include: increased deforestation; siltation; habitat fragmentation; introduction of non-native species; reduction in the availability of aquatic habitats; and changes in biogeochemical process. These proposals jeopardize biodiversity and may compromise the negotiations for an agreement between Mercosur and the European Union.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Brasil , Biodiversidade , Florestas , Agricultura
2.
Conserv Biol ; : e14226, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111958

RESUMO

Freshwater ecosystems and their bordering wetlands and riparian zones are vital for human society and biological diversity. Yet, they are among the most degraded ecosystems, where sharp declines in biodiversity are driven by human activities, such as hydropower development, agriculture, forestry, and fisheries. Because freshwater ecosystems are characterized by strongly reciprocal linkages with surrounding landscapes, human activities that encroach on or degrade riparian zones ultimately lead to declines in freshwater-riparian ecosystem functioning. We synthesized results of a symposium on freshwater, riparian, and wetland processes and interactions and analyzed some of the major problems associated with improving freshwater and riparian research and management. Three distinct barriers are the lack of involvement of local people in conservation research and management, absence of adequate measurement of biodiversity in freshwater and riparian ecosystems, and separate legislation and policy on riparian and freshwater management. Based on our findings, we argue that freshwater and riparian research and conservation efforts should be integrated more explicitly. Best practices for overcoming the 3 major barriers to improved conservation include more and sustainable use of traditional and other forms of local ecological knowledge, choosing appropriate metrics for ecological research and monitoring of restoration efforts, and mirroring the close links between riparian and freshwater ecosystems in legislation and policy. Integrating these 3 angles in conservation science and practice will provide substantial benefits in addressing the freshwater biodiversity crisis.


Tres grandes pasos hacia la conservación de la biodiversidad ribereña y de agua dulce Resumen Los ecosistemas de agua dulce y los humedales y zonas ribereñas que los bordean son vitales para la sociedad y la biodiversidad. Sin embargo, se encuentran entre los ecosistemas más degradados en donde las declinaciones graves de la biodiversidad son causadas por actividades humanas como el desarrollo hidroeléctrico, la agricultura, la silvicultura y las pesquerías. Puesto que los ecosistemas de agua dulce se caracterizan por tener un vínculo recíproco con los paisajes que los rodean, las actividades humanas que invaden o degradan las zonas ribereñas terminan en la declinación del funcionamiento del ecosistema ribereño de agua dulce. Sintetizamos los resultados de un simposio sobre los procesos e interacciones de agua dulce, ribereños y de humedales y analizamos algunos de los principales problemas asociados con la mejora de la investigación y gestión de agua dulce y ríos. Tres barreras claras son la falta de participación de la población local en la investigación y gestión de la conservación, la ausencia de una medición adecuada de la biodiversidad en los ecosistemas de agua dulce y ribereños, y una legislación y política separadas sobre la gestión ribereña y de agua dulce. Con base en nuestros hallazgos, argumentamos que la investigación y los esfuerzos de conservación de agua dulce y ríos deberían integrarse de manera más explícita. Las mejores prácticas para sobreponerse a las tres grandes barreras incluyen un mayor uso sustentable de los conocimientos tradicionales y otras formas de conocimiento, la selección de medidas apropiadas para la investigación ecológica y el monitoreo de los esfuerzos de restauración y la replicación de los vínculos cercanos entre los ecosistemas ribereños y de agua dulce en la legislación y en las políticas. La integración de estos tres ángulos dentro de las ciencias y prácticas de conservación proporcionará beneficios importantes en la manera de abordar la crisis de la biodiversidad de agua dulce.

3.
Science ; 381(6662): 1067-1071, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676959

RESUMO

Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.


Assuntos
Biomassa , Tamanho Corporal , Animais , Fenótipo , Fatores de Tempo
4.
Proc Biol Sci ; 290(1998): 20222450, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161334

RESUMO

Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.


Assuntos
Traqueófitas , Biodiversidade , Bases de Dados Factuais , Espécies Introduzidas
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220199, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246380

RESUMO

Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Biodiversidade , Ecossistema , Humanos
6.
Nat Commun ; 14(1): 1463, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927847

RESUMO

While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Fatores de Tempo , Água Doce
7.
Proc Biol Sci ; 290(1993): 20222273, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36809807

RESUMO

Recent research has uncovered rapid compositional and structural reorganization of ecological assemblages, with these changes particularly evident in marine ecosystems. However, the extent to which these ongoing changes in taxonomic diversity are a proxy for change in functional diversity is not well understood. Here we focus on trends in rarity to ask how taxonomic rarity and functional rarity covary over time. Our analysis, drawing on 30 years of scientific trawl data, reveals that the direction of temporal shifts in taxonomic rarity in two Scottish marine ecosystems is consistent with a null model of change in assemblage size (i.e. change in numbers of species and/or individuals). In both cases, however, functional rarity increases, as assemblages become larger, rather than showing the expected decrease. These results underline the importance of measuring both taxonomic and functional dimensions of diversity when assessing and interpreting biodiversity change.


Assuntos
Biodiversidade , Ecossistema , Animais , Peixes
8.
Ecology ; 103(12): e3820, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35869831

RESUMO

Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual-based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down. We then examined interdependencies between changes in abundance, evenness and richness in more than 1100 assemblages sampled either through time or across space. As predicted, richness changes were greatest when abundance and evenness changed in the same direction, and countervailing changes in abundance and evenness acted to constrain the magnitude of changes in species richness. Site-to-site differences in abundance, evenness, and richness were often decoupled, and pairwise relationships between these components across assemblages were weak. In contrast, changes in species richness and relative abundance were strongly correlated for assemblages varying through time. Temporal changes in local biodiversity showed greater inertia and stronger relationships between the component changes when compared to site-to-site variation. Overall, local variation in assemblage diversity was rarely due to repeated passive samples from an approximately static species abundance distribution. Instead, changing species relative abundances often dominated local variation in diversity. Moreover, how changing relative abundances combined with changes to total abundance frequently determined the magnitude of richness changes. Embracing the interdependencies between changing abundance, evenness and richness can provide new information to better understand biodiversity change in the Anthropocene.


Assuntos
Biodiversidade , Ecossistema , Humanos
9.
Nat Commun ; 13(1): 877, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169123

RESUMO

Rare species, which represent a large fraction of the taxa in ecological assemblages, account for much of the biological diversity on Earth. These species make substantial contributions to ecosystem functioning, and are targets of conservation policy. Here we adopt an integrated approach, combining information on the rarity of species trait combinations, and their spatial restrictedness, to quantify the biogeography of rare fish (a taxon with almost 13,000 species) in the world's oceans. We find concentrations of rarity, in excess of what is predicted by a null expectation, near the coasts and at higher latitudes. We also observe mismatches between these rarity hotspots and marine protected areas. This pattern is repeated for both major groupings of fish, the Actinopterygii (bony fish) and Elasmobranchii (sharks, skates and rays). These results uncover global patterns of rarity that were not apparent from earlier work, and highlight the importance of using metrics that incorporate information on functional traits in the conservation and management of global marine fishes.


Assuntos
Conservação dos Recursos Naturais , Elasmobrânquios/classificação , Peixes/classificação , Animais , Biodiversidade , Ecossistema , Geografia , Oceanos e Mares
10.
Glob Chang Biol ; 28(1): 46-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669982

RESUMO

The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.


Assuntos
Biodiversidade , Peixes , Animais , Ecossistema , Plantas
12.
Curr Biol ; 31(19): R1174-R1177, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637726

RESUMO

As prehistoric cave paintings illustrate, our species has had an enduring appreciation of the variety and abundance of life on Earth. Today, however, concern is focused on the pressure humanity is placing on the natural world, and on the continued ability of ecosystems to deliver the services on which we all depend. To understand the extent of this 'biodiversity crisis' and develop strategies to ameliorate its impact, it is essential to be able to accurately measure biological diversity (a term often contracted to biodiversity) and make informed predictions about how and why this diversity varies over space and time.


Assuntos
Biodiversidade , Ecossistema
13.
J Fish Biol ; 99(3): 1079-1086, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080198

RESUMO

Understanding how the biodiversity of freshwater fish assemblages changes over time is an important challenge. Until recently most emphasis has been on taxonomic diversity, but it is now clear that measures of functional diversity (FD) can shed new light on the mechanisms that underpin this temporal change. Fish biologists use different currencies, such as numerical abundance and biomass, to measure the abundance of fish species. Nonetheless, because they are not necessarily equivalent, these alternative currencies have the potential to reveal different insights into trends of FD in natural assemblages. In this study, the authors asked how conclusions about temporal trends in FD are influenced by the way in which the abundance of species has been quantified. To do this, the authors computed two informative metrics, for each currency, for 16 freshwater fish assemblages in Trinidad's Northern Range that had been surveyed repeatedly over 5 years. The authors found that numerical abundance and biomass uncover different directional trends in these assemblages for each facet of FD, and as such inform hypotheses about the ways in which these systems are being restructured. On the basis of these results, the authors concluded that a combined approach, in which both currencies are used, contributes to our understanding of the ecological processes that are involved in biodiversity change in freshwater fish assemblages.


Assuntos
Ecossistema , Peixes , Animais , Biodiversidade , Biomassa , Água Doce
14.
Ambio ; 50(1): 85-94, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32040746

RESUMO

Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth's arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world's preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth's total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity's highest priorities.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Brasil , China , Água Doce , Humanos , Índia
15.
R Soc Open Sci ; 7(7): 192045, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874609

RESUMO

As pressures on biodiversity increase, a better understanding of how assemblages are responding is needed. Because rare species, defined here as those that have locally low abundances, make up a high proportion of assemblage species lists, understanding how the number of rare species within assemblages is changing will help elucidate patterns of recent biodiversity change. Here, we show that the number of rare species within assemblages is increasing, on average, across systems. This increase could arise in two ways: species already present in the assemblage decreasing in abundance but with no increase in extinctions, or additional species entering the assemblage in low numbers associated with an increase in immigration. The positive relationship between change in rarity and change in species richness provides evidence for the second explanation, i.e. higher net immigration than extinction among the rare species. These measurable changes in the structure of assemblages in the recent past underline the need to use multiple biodiversity metrics to understand biodiversity change.

16.
Proc Biol Sci ; 287(1933): 20200889, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811304

RESUMO

Overexploitation is recognized as one of the main threats to global biodiversity. Here, we report a widespread change in the functional diversity of fisheries catches from the large marine ecosystems (LMEs) of the world over the past 65 years (1950 to 2014). The spatial and temporal trends of functional diversity exploited from the LMEs were calculated using global reconstructed marine fisheries catch data provided by the Sea Around Us initiative (including subsistence, artisanal, recreational, industrial fisheries, and discards) and functional trait data available in FishBase. Our analyses uncovered a substantial increase in the functional richness of both ray-finned fishes (80% of LMEs) and cartilaginous species (sharks and rays) (75% of LMESs), in line with an increase in the taxonomic richness, extracted from these ecosystems. The functional evenness and functional divergence of these catches have also altered substantially over the time span of this study, with considerable geographic variation in the patterns detected. These trends show that global fisheries are increasingly targeting species that play diverse roles within the marine ecosystem and underline the importance of incorporating functional diversity in ecosystem management.


Assuntos
Biodiversidade , Pesqueiros/estatística & dados numéricos , Animais , Organismos Aquáticos , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Peixes , Tubarões
17.
Science ; 368(6497): 1341-1347, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554591

RESUMO

Global biodiversity assessments have highlighted land-use change as a key driver of biodiversity change. However, there is little empirical evidence of how habitat transformations such as forest loss and gain are reshaping biodiversity over time. We quantified how change in forest cover has influenced temporal shifts in populations and ecological assemblages from 6090 globally distributed time series across six taxonomic groups. We found that local-scale increases and decreases in abundance, species richness, and temporal species replacement (turnover) were intensified by as much as 48% after forest loss. Temporal lags in population- and assemblage-level shifts after forest loss extended up to 50 years and increased with species' generation time. Our findings that forest loss catalyzes population and biodiversity change emphasize the complex biotic consequences of land-use change.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Animais , Biota , Atividades Humanas , Humanos , Dinâmica Populacional
18.
Nat Ecol Evol ; 4(7): 927-933, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32367031

RESUMO

Climate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5-60.0° latitude) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, where species richness mostly increases with warming. However, biodiversity responses are conditional on the baseline climate, such that in initially warmer locations richness increase is more pronounced while abundance declines with warming. In contrast, we do not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. As the world is committed to further warming, substantial challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of 'climate migrants'. Temperature-driven community restructuring is especially evident in the ocean, whereas climatic debt may be accumulating on land.


Assuntos
Biodiversidade , Mudança Climática , Temperatura
19.
Biol Lett ; 15(5): 20190133, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31088282

RESUMO

The world's ecosystems are experiencing unparalleled rates of biodiversity change, with invasive species implicated as one of the drivers that restructure local assemblages. Here we focus on the processes leading to biodiversity change in a biodiversity hotspot, the Brazilian Cerrado. The null expectation that invasion leads to increase in local species richness is supported by our investigation of the grass layer in two key habitats (campo sujo and campo úmido). Our analysis uncovered a linear relationship between total richness and invasive richness at the plot level. However, because the invasive species-even though few in number-are widespread, their contribution to local richness (α-diversity) is offset by their homogenizing influence on composition (ß-diversity). We thus identify a mechanism that can help explain the paradox that species richness is not declining in many local assemblages, yet compositional change is exceeding the predictions of ecological theory. As such, our results emphasize the importance of quantifying both α-diversity and ß-diversity in assessments of biodiversity change in the contemporary world.


Assuntos
Biodiversidade , Ecossistema , Brasil , Espécies Introduzidas
20.
Ecol Lett ; 22(5): 847-854, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30874368

RESUMO

Scientists disagree about the nature of biodiversity change. While there is evidence for widespread declines from population surveys, assemblage surveys reveal a mix of declines and increases. These conflicting conclusions may be caused by the use of different metrics: assemblage metrics may average out drastic changes in individual populations. Alternatively, differences may arise from data sources: populations monitored individually, versus whole-assemblage monitoring. To test these hypotheses, we estimated population change metrics using assemblage data. For a set of 23 241 populations, 16 009 species, in 158 assemblages, we detected significantly accelerating extinction and colonisation rates, with both rates being approximately balanced. Most populations (85%) did not show significant trends in abundance, and those that did were balanced between winners (8%) and losers (7%). Thus, population metrics estimated with assemblage data are commensurate with assemblage metrics and reveal sustained and increasing species turnover.


Assuntos
Biodiversidade , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...